D'Comment en vient-on à poser r dans (*)? Voici un cheminement possible: 0 x r y → Comme y-x> /n, il existe intuitivement (of figure) un multiple de /n qui appositient à] x,y[, noton, le $\frac{k}{n}$ ($k \in \mathbb{Z}$). Ce k n'et "pas loin" de $\frac{x}{(k)}$...

The si l'an prend $k = \lfloor nx \rfloor$ an réalise que $\frac{k}{n} \leqslant x$ danc ça ne manche pas

The solution of the size $\frac{k}{n} \leqslant x$ danc $\frac{k}{n} \leqslant y$. 0.6 Valeur absolue d'un nombre réel Def: $|Pan \times EIR|$, an définit $|x| = \begin{cases} x & xi & x \ge 0 \\ -x & xi & x < 0 \end{cases}$ IXI est a ppelé la valeur absolue $|E_x: |-3| = -(-3) = 3$ can -3 < 0Quelque propriétés de la valeur absolue (x, y ER et a ER+) (i) $|x| \ge 0$ avec égalité ssi x = 0

(ii) $-|x| \ll x \ll |x|$

(iii) |x| = |-x|

(iv) $|x \cdot y| = |x| \cdot |y|$

(v) $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$

(vi) $|x| \leqslant \alpha \iff -\alpha \leqslant x \leqslant \alpha \pmod{\mathbb{R}_+}$

(vii) Inégalité triangulaire: |x+y| < |x|+|y|

(viii) Inégalité triangulaire inverse: |x-y| > ||x|-|y||

Prevve de (vii): par (ii) - $|x| \ll x \ll |x|$ et - $|y| \ll y \ll |y|$ En sommant: $-|x|-|y| \ll x+y \ll |x|+|y|$ par (vi): $|x+y| \ll |x|+|y|$ Prop: Un ensemble ACIR, A+Ø est borné ssi JCEIR t. g YaEA, lal«C. (très utile en exercices)

<u>Prenve:</u> => Supposas Abonné.

Soit x (resp. y) un majorant (resp. un minorant) de A. On a $\forall a \in A$, $|a| \leqslant \max_{i} |x_i|, |y_i| = : C$ (par (v_i))

⇒ Soit CER t.g Ya € A, lal < C.
</p>

Alon par (vi), on a Ya EA, -C & a & C donc A ext borné

Chapitre 1: suites réelles

1.1 Definitions

Def: Une suite réelle et une fonction f de IN vers IR.

(Plus généralent- une suite et une fonction de IN vers E on E et gnellangue).

Notation: le nûre tenne f(n) seron noté $(x_n)_{n\geqslant 0}$ on $(x_n)_{n\geqslant 0}$ on $(x_n)_{n\geqslant 0}$ on $(x_n)_{n\geqslant 0}$

Exemples:

· Suite anthmétique de raison r ER:

$$u_n = u_0 + n \cdot r$$
, $u_0 \in \mathbb{R}$, $\forall n \in \mathbb{N} \iff \begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = u_n + r \end{cases}$
Def. par récumence

• Suite géométrique de raison $r \in \mathbb{R}^*$: $u_n = r^n \cdot u_0, \forall n \in \mathbb{N} \iff \begin{cases} u_{n+1} = r \cdot u_n \end{cases}$

(of analyses). Suite des nombres premiers: un est le (n+1) in nb premier (2,3,5,7,11,...) (of probabilités). Une suite de lancers de dés, par ex (1,2,6,4,3,3,...)

Def: On dit qu'une suite (un) est {majorée } si l'ensemble {un; ne Nyest {minoré }. bonnée }

Def: On dit qu'une suite est · croissante si Yn EIN, un, > un · strictement croissante si Yn EIN, un, > un

· decraissante si Yn EIN, unti ~un

· Strickement decraissante si the EIN, une (un

- · monotone si elle est croissante on décroissante. · strict. monotone si elle est strict. croissante on strict. décroissante.
- <u>Néthode</u> pour montrer qu'une suite (un)_{n>0} est croissante on peut essayer de :

 - → montrer que $\frac{u_{n+1} u_n \ge 0}{u_n} \ge 1$ si $u_n > 0$, $\forall_n \in \mathbb{N}$ directer—on par récurrence → si $u_n = f(n)$ où $f: \mathbb{R} \to \mathbb{R}$, étudier les variations de f.
- 1.2 Convergence et divergence
- Def: (1) On dit qu'une suite réelle (un) converge veus l'ER ssi $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $\forall n \in \mathbb{N}$ ($n \geqslant N \Rightarrow |u_n \varepsilon| \leq \varepsilon$)

 (2) On dit que (un) converge ssi $\exists \ell \in \mathbb{R}$ t. q (un) converge veus ℓ .

 - (3) _____ diverge ssi elle ne converge par.
- Exo; 1/ Montrer que dans (1) on remplacer les inégalités sur lignées par > on \leq et obtenir une def. équivalente. On peut aussi prendre $N \in \mathbb{R}$.
 - Prop (unicité): Si (un) converge alors la limite et unique.
 - Preuve: Scient l_1 , $l_2 \in \mathbb{R}$ deux limites de (un). Soit $\varepsilon > 0$:
 - $\exists N, \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N) \Rightarrow |u_n \{1\} < \varepsilon/2$
 - $\exists N_2 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geqslant N_2 \Rightarrow |u_n l_2| < \epsilon/2)$
 - En particulier pour no = max { N, , Nzy
 - $|\ell_1 \ell_2| = |(\ell_1 u_{n_0}) + (u_{n_0} \ell_2)| \leq |\ell_1 u_{n_0}| + |\ell_2 u_{n_0}| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
 - On a danc $\forall \epsilon > 0$, $|l_1 l_2| < \epsilon$ danc $|l_1 = l_2|$ série $\epsilon = 2$

Notation: Si (un) Kend vers $l \in \mathbb{R}$, on note $\lim_{n \to \infty} u_n = l$ On \lim_{n . La suite ((-1)n)nen diverge.

Ex: , La suite $\left(\frac{1}{n}\right)_{n \in \mathbb{N}^*}$ converge vers 0. En effet soit $\varepsilon > 0$; on a $\exists N \in \mathbb{N}$, $\forall n \geq N$ on a $\left| \frac{1}{n} \right| \ll \varepsilon$ can an peut prendre $N = \left| \frac{1}{\varepsilon} \right| + 1$.

Par l'absunde: supposons lim (-1) = lER alors avec $\varepsilon = \frac{1}{3}$: $\exists n \in \mathbb{N}$ to $|u_n - \ell| < \frac{1}{3}$ et $|u_{n+1} - \ell| < \frac{1}{3}$

Il s'ensuit: $2 = |u_{n+1} - u_n| \ll |u_{n+1} - \ell| + |u_n - \ell| < \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ $2 < \frac{2}{3} = Contradition! Date ((-1)^n)_{n \in IIV}$ diverge.

Des (limite infinie). Soit (un) ne une suite réelle.

- · On dit que (un) rend vers +00 ssi VAER, FNEN, YneN (n) N => un > A)

 (on VAER*)

 (on un > A) On note lim un = +00 on un mosto
- On dit que (un) tend vers ∞ ssi $\forall A \in \mathbb{R}$, $\exists N \in \mathbb{N}$, $\forall n \in \mathbb{N}$ $(n \ge N \Rightarrow)$ $u_n \leqslant A)$ On note $\lim_{n \to +\infty} u_n = -\infty$ on $u_n \xrightarrow[n \to \infty]{} -\infty$

Ex: an = n2, Yn EN. Alos lim an = +00 con: sait A > 0: $\exists N \in \mathbb{N}$, $\forall n \geqslant \mathbb{N}$ on a $u_n \geqslant A$ on prenant $N = \lfloor JA \rfloor + 1$ on $N = \lfloor JA \rfloor + 1$, etc... Prop: 1) (un) converge => (un) bornée 2) lim un = + ∞ => (un) minorée 3/ lim un = - ∞ => (un) majorée fin cour 18/03